Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13985, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633958

RESUMO

CKD progression depends on the activation of an intricate set of hemodynamic and inflammatory mechanisms, promoting renal leukocyte infiltration, inflammation and fibrosis, leading to renal function loss. There are currently no specific drugs to detain renal fibrogenesis, which is a common end-point for different nephropathies. Clinical therapy for CKD is mostly based on the management of hypertension and proteinuria, partially achieved with renin-angiotensin-aldosterone system (RAAS) blockers, and the control of inflammation by immunosuppressive drugs. The aim of the present study was to verify if the administration of tamoxifen (TAM), an estrogen receptor modulator, clinically employed in the treatment of breast cancer and predicted to exert antifibrotic effects, would promote additional benefits when associated to a currently used therapeutic scheme for the conservative management of experimental CKD. Wistar rats underwent the NAME model of hypertensive nephrosclerosis, obtained by daily oral administration of a nitric oxide synthesis inhibitor, associated to dietary sodium overload. The therapeutic association of TAM to losartan (LOS), and mofetil mycophenolate (MMF) effectively reduced the severe hypertension, marked albuminuria and glomerular damage exhibited by NAME animals. Moreover, the association also succeeded in limiting renal inflammation in this model, and promoted further reduction of ECM interstitial accumulation and renal fibrosis, compared to the monotherapies. According to our results, the association of TAM to the currently used conservative treatment of CKD added significant antifibrotic effects both in vivo and in vitro, and may represent an alternative to slow the progression of chronic nephropathy.


Assuntos
Hipertensão , Nefroesclerose , Insuficiência Renal Crônica , Ratos , Animais , Ratos Wistar , Nefroesclerose/tratamento farmacológico , Nefroesclerose/etiologia , Tratamento Conservador , Tamoxifeno/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Inflamação
2.
Front Physiol ; 13: 867444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721551

RESUMO

The ongoing COVID-19 pandemic represents an extra burden in the majority of public and private health systems worldwide beyond the most pessimistic expectations, driving an urgent rush to develop effective vaccines and effective medical treatments against the SARS-CoV-2 pandemic. The Nucleocapsid structural viral protein is remarkably immunogenic and hugely expressed during infection. High IgG antibodies against Nucleocapsid protein (N protein) levels were detected in the serum of COVID-19 patients, confirming its pivotal antigen role for a T lymphocyte response in a vaccine microenvironment. Currently, adverse events associated with immunizations have raised some degree of concern, irrespective of its huge benefits in dealing with disease severity and decreasing mortality and morbidity. This hitherto study evaluates histological changes in rats' testes, epididymis, prostate, and seminal vesicles and analyzes hormone levels after solely N protein inoculation. Therefore, we exposed a group of Lewis rats to weekly injections of the recombinant N protein for 28 days, while a control group was inoculated with a buffer solution. The N group revealed a more significant number of spermatozoa. Spermatozoa in the seminiferous tubules were counted in twenty 400 × microscopy fields (mean of 9.2 vs. 4.6 in the control group; p < 0,01), but significantly lower testosterone levels (mean of 125.70 ng/dl vs. 309,00 ng/dl in the control group; p < 0,05) were found. No other histological and biochemical changes were displayed. Conclusively, these data suggest testicular hormonal imbalance mediated by the SARS-CoV-2 N protein that could be linked to reported post-COVID-19 syndrome hypogonadism. More relevant research might be performed to confirm this viral antigen's deleterious mechanism in the human testicular microenvironment, particular in Leydig cell function.

3.
PLoS One ; 17(5): e0268434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35609032

RESUMO

The SARS-CoV-2 pandemic have been affecting millions of people worldwide, since the beginning of 2020. COVID-19 can cause a wide range of clinical symptoms, which varies from asymptomatic presentation to severe respiratory insufficiency, exacerbation of immune response, disseminated microthrombosis and multiple organ failure, which may lead to dead. Due to the rapid spread of SARS-CoV-2, the development of vaccines to minimize COVID-19 severity in the world population is imperious. One of the employed techniques to produce vaccines against emerging viruses is the synthesis of recombinant proteins, which can be used as immunizing agents. Based on the exposed, the aim of the present study was to verify the systemic and immunological effects of IM administration of recombinant Nucleocapsid protein (NP), derived from SARS-CoV-2 and produced by this research group, in 2 different strains of rats (Rattus norvegicus); Wistar and Lewis. For this purpose, experimental animals received 4 injections of NP, once a week, and were submitted to biochemical and histological analysis. Our results showed that NP inoculations were safe for the animals, which presented no clinical symptoms of worrying side effects, nor laboratorial alterations in the main biochemical and histological parameters, suggesting the absence of toxicity induced by NP. Moreover, NP injections successfully triggered the production of specific anti-SARS-CoV-2 IgG antibodies by both Wistar and Lewis rats, showing the sensitization to have been well sufficient for the immunization of these strains of rats. Additionally, we observed the local lung activation of the Bronchus-Associated Lymphoid Tissue (BALT) of rats in the NP groups, suggesting that NP elicits specific lung immune response. Although pre-clinical and clinical studies are still required, our data support the recombinant NP produced by this research group as a potential immunizing agent for massive vaccination, and may represent advantages upon other recombinant proteins, since it seems to induce specific pulmonary protection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunidade , Imunização , Pulmão , Proteínas do Nucleocapsídeo , Ratos , Ratos Endogâmicos Lew , Ratos Wistar , Proteínas Recombinantes , Glicoproteína da Espícula de Coronavírus , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...